LIDEEP

Projects

Parallel Programming (MPI) @ JOLICH | =5
an d B at C h U S ag e (S L U R I\/I) J Forschungszentrum glEJEE'II:ICE:OMPUTING
Dr. Gabriele Cavallaro o
a":—,. UNIVERSITY OF ICELAND
Postdoctoral Researcher ZRUSIE SCHOOL OF ENGINEERING AND NATURAL SCIENCES
Ofsead
High Productivity Data Processing Group VECHANICAL ENGINEERING AND COMPUTER SCIENCE

Julich Supercomputing Centre
—

LIDEEP

O u t | | ne Projects

* High Performance Computing (HPC)
— TOP500
— Architectures of HPC Systems
— Message Passing Interface (MPI) Concepts
— Collective functions

* Batch System
— The Batch System Flow

e Practicals
— Access the JURECA Cluster
— Write and Submit a Batch Script

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Projects

High Performance Computing

r _
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

What is High Performance Computing? Projects

* Wikipedia: ‘redirects from HPC to Supercomputer’

— A supercomputer is a computer at the frontline of contemporary processing capacity with
particularly high speed of calculation [1] Wikipedia ‘Supercomputer’ Online

* HPC includes work on ‘four basic building blocks’:

— Theory (numerical laws, physical models, speed-up performance, etc.)
— Technology (multi-core, supercomputers, networks, storages, etc.)

— Architecture (shared-memory, distributed-memory, interconnects, etc.)
— Software (libraries, schedulers, monitoring, applications, etc.)

[2] Introduction to High Performance Computing for Scientists and Engineers

B

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Understanding High Performance Computing Projects

* High Performance Computing (HPC) is based on computing resources that enable the
efficient use of parallel computing techniques through specific support with dedicated hardware
such as high performance cpu/core Interconnections

@ B P
Interconnection

important

focus in this talk

* High Throughput Computing (HTC) is based on commonly available computing resources such
as commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing
a high performance interconnection between the cpu/cores

network W]

interconnection
less important! L] 00 [

Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Parallel Computing Projects

* All modern supercomputers heavily depend on parallelism

* We speak of parallel computing whenever a number of ‘compute elements
(e.g. cores) solve a problem in a cooperative way

[2] Introduction to High Performance Computing for Scientists and Engineers

* ‘The measure of speed in High Performance Computing matters

— Common measure for parallel computers established by TOP500 list

— Based on benchmark for ranking the best 500 computers worldwide

[3] TOP 500 supercomputing sites

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

TOP 500 List (June 2018)

e Based on the LINPACK benchmark

* LINPACK solves a dense system
of linear equations of unspecified size.
It covers only a single architectural
aspect (‘critics exist’)

[4] LINPACK Benchmark implementation

* Alternatives realistic applications,
benchmark suites and criteria exist

[5] HPC Challenge Benchmark Suite

[6] JUBE Benchmark Suite [7] The GREENS00

;|

Parallel Rrogramming (MPI) and Batch Usage (SLURM) &

Rank Site

1 DOE/SC/0ak Ridge National
Laboratory
United States

2 National Supercomputing Center in
Wuxi
China

3 DOE/NNSA/LLNL
United States

4 National Super Computer Center in
Guangzhou
China

5 National Institute of Advanced
Industrial Science and Technology
(AIST)
Japan

LIDEEP

Projects
Rmax Rpeak Power
System Cores (TFlop/s) (TFlop/s) (kW)
Summit - IBM Power System 2,282,544 122,300.0 187,659.3 8,806

AC922, IBM POWER9 22C 3.07GHg,
NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband

IBM

Sunway TaihuLight - Sunway MPP, 10,649,600 93,014.6 125,435.9 15,371
Sunway SW26010 260C 1.45GHz,

Sunway

NRCPC

Sierra - IBM Power System 1,672,480 71,610.0 119,193.6
S922LC, IBM POWER® 22C 3.1GHz,

NVIDIA Volta GV100, Dual-rail

Mellanox EDR Infiniband

IBM

Tianhe-2A - TH-IVB-FEP Cluster, 4,981,760 61,444.5 100,678.7 18,482
Intel Xeon E5-2692v2 12C 2.2GHz,

TH Express-2, Matrix-2000

NUDT

Al Bridging Cloud Infrastructure 391,680 19,880.0 32,576.6 1,649
(ABCI) - PRIMERGY CX2550 M4,

Xeon Gold 6148 20C 2.4GHz,

NVIDIA Tesla V100 SXM2,

Infiniband EDR

Fujitsu

23 Forschungszentrum Juelich (FZJ)
Germany

JUWELS Module 1 - Bull Sequana 114,480 6,177.7 9,891.1 1,361
X1000, Xeon Platinum 8168 24C

2.7GHz, Mellanox EDR

InfiniBand/ParTec ParaStation

ClusterSuite

Bull, Atos Group

LIDEEP

Architectures of HPC Systems Projects

* Two dominant types of architectures

— Shared-Memory Computers

— Distributed-Memory Computers

* Often hierarchical (hybrid) systems of both in practice

* More recently both above are considered as ‘programming models’

— Shared-Memory parallelization with OpenMP

— Distributed-Memory parallel programming with MPI

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Shared-Memory Computers Projects

* System where a number of CPUs work on a common, shared physical address space
* Programming using OpenMP (set of compiler directives to ‘mark parallel regions’)

* Enables immediate access to all data by all processors without explicit communication

socket

TTTTTT T T T

L L [8] OpenMP API Specification

Shared Memory

Memory

[2] Introduction to High Performance Computing
for Scientists and Engineers

T1 172 13 T4 15

r _
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Distributed-Memory Computers Projects

* Establishes a ‘system view’ where no process can access another process’ memory directly

Programming
Model:
Message
Passing

[2] Introduction to High Performance Computing
for Scientists and Engineers

Communication network

* Processors communicate via Network Interfaces (NI)
* NI mediates the connection to a Communication network
e This setup is rarely used -> a programming model view today

.

‘ s
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Programming with Distributed Memory using MPI Projects

* Enables explicit message passing as communication between processors

[9] MPI Standard

P1 P2 P3 P4 P5
* Noremote memory access on distributed-memory systems

* Require to ‘send messages’ back and forth between processes PX

* Programming is tedious & complicated, but most flexible method

;|

Parallel Rrogramming (MPI) and Batch Usage (SLURM) &

LIDEEP

Hierarchical Hybrid Computers Projects

* Mixture of shared-memory and distributed-memory systems

* Nowadays large-scale ‘hybrid’ parallel computers have shared-memory building blocks
Interconnected with a fast network (e.g., InfiniBand)

Communication network

LIDEEP

What is Message Passing Interface (MPI)? Projects

e ‘Communication library’ abstracting from low-level network view

— Offers 500+ available functions to communicate between computing nodes
— Practice reveals: parallel applications often require just ~12 (!) functions
— Includes routines for efficient ‘parallel 1/O’ (using underlying hardware)

* Supports ‘different ways of communication’
— ‘Point-to-point communication’ between two computing nodes (P<—->P)

— Collective functions involve ‘N computing nodes in useful communication’

Recall ‘computing

e Deployment on Supercomputers nodes’ are independent

— Installed on (almost) all parallel computers computing processors
— Different languages: C, Fortran, Python, R, etc. (that may also have N

. : : cores each) and that are
— Careful: different versions exist all part of one big

parallel computer

‘ 8
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

Key Keatures of MPI ///DEEI’

Projects

* Simplify programming in parallel programming, focus on applications

* [tis not designed to handle any communication in computer networks

* Designed for performance within large parallel computers (e.g. no security)
* Several open-source well-tested implementations of MPI

* [t enables portability of parallel applications

Porting a parallel MPI Library

MPI application

LIDEEP

Message Passing: Exchanging Data Projects

e Each processor has its own data and memory that cannot be accessed by other processors

~"Compute
! Node

J DATA: 17'

P1 P2 P3 P4 P5 P6

Point-To-Point
Communications

DATA: 06

Parallel Programming‘(MPI) and Batch Usage (SLURM)

LIDEEP

Collective Functions: Broadcast (one-to-many) Projects

* Broadcast distributes the same data to many or even all other processors

P

f_lﬁ _

NEW: 17

p

LIDEEP

Collective Functions: Scatter (one-to-many) Projects

e Scatter distributes different data to many or even all other processors

T DATA: 10

T_ DATA: 20 M

T DATA: 30

-

DATA: 80

M DATA: 19

LIDEEP

Collective Functions: Gather (many-to-one) Projects

* Gather collects data from many or even all other processors to one specific processor

NEW: 80

NEW:19 @ p
NEW: 06

T DAT.\: 17m m DATA: 80
P -‘
N\
DATA: 06 M M DATA: 19

Parallel Rrogramming (MPI) and Batch Usage (SLURM)
W

o (IDEEP

Collective Functions: Reduce (many-to-one) Projects

* Each Reduce combines collection with computation based on data from many or even all
other processors

* Usage of reduce includes finding a global minimum or maximum, sum, or product of
the different data located at different processors

NEW: 122

+ global sum as example

DATA: 19

‘ s
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Projects

Batch System

k|

Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

What is a Batch System? Projects

* Mechanism to control access by many users to shared computing resources
* Queuing / scheduling system for the jobs of the users
* Manages the reservation of resources and job execution

* Allows users to “fire and forget”, long calculations or many jobs (“production runs”)

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Why do we need a Batch System? Projects

* Opposite of interactive processing

* Ensure all users get a fair share of compute resources (demand usually exceeds supply)
* To ensure the machine is utilized as efficiently as possible

* To track usage - for accounting and budget control

* To mediate access to other resources e.g. software licences

The only access to significant resources on the HPC machines is through
the batch process

‘ 8
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

How to use a Batch System Projects

1. Setup a job, consisting of:
— Commands that run one or more calculations / simulations
— Specification of compute resources needed to do this

2. Submit your job to the batch system
— Job is placed in a queue by the scheduler
— Will be executed when there is space and time on the machine
— Job runs until it finishes successfully, is terminated due to errors, or exceeds a time limit

3. Examine outputs and any error messages

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Batch System Flow Projects
Job Delete
Job Submit Command
Command
Write Job‘ - Job - Job
Job Script Queued Executes Finished

Allocated Job Status Output
Job ID Command Files
(& Errors)

Status

[11] Batch Systems

‘ s
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

JSC Batch Model ///DEEF

Projects

* Slurm is the chosen Batch System (Workload Manager) for JURECA

— Scheduling according to priorities: jobs with the highest priorities will be scheduled next

— Backfilling scheduling algorithm: the scheduler checks the queue and may schedule jobs with lower priorities that can fit in the gap created
by freeing resources for the next highest priority jobs

— No node-sharing: the smallest allocation for jobs is one compute node. Running jobs do not disturb each other.

— Accounted CPU-Quotas/job = Number-of-nodes x Walltime (x cores/node)

Core Lellelliip|pl|lrlplir|lrpl dP|lPpllip|P| |P|P| |P]|P]

Node

Communication network

LIDEEP

Projects

Practicals

k|

Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

JURECA HPC System at JSC ///DEE’,

Projects

* Characteristics
— Login nodes with 256 GB memory per node
— 45,216 CPU cores
— 1.8 (CPU) + 0.44 (GPU) Petaflop/s peak performance

— Two Intel Xeon E5-2680 v3 Haswell
CPUs per node: 2 x 12 cores, 2.5 GhZ

— 75 compute nodes equipped with two
NVIDIA K80 GPUs (2 x 4992 CUDA cores)

[10] JURECA HPC System

e Architecture & Network

. @ HPC
— Based on T-Platforms V-class server architecture :::::

— Mellanox EDR InfiniBand high-speed
network with non-blocking fat tree topology

— 100 GIB per second storage connection to JUST
-

. &
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

Access JURECA Cluster (Step 1) ///DEE”

Projects

e Open your web browser

e Connectto https://goo.gl/NM6qgZk

 Click on the orange button “Sign in to Jupyter@JSC”

&« ¢ @ Q_ https://goo.gl/NM6gZk Q, Sea
Z Jupyter

Username: train0??

Welcome to Jupyter@JSC

SSH Passphrase: 2722227272272 y Requirements

/ * You need a JURECA or a JURON account.
I_Dgin here: h‘[}'[;ps . ffg(}{) . g:]_ fHHEng + You need a JSC Webservice Account or a train account.
https://igarss2018.org/Tutorials.asp#FD-4 Documentation

« For further information visit this page.

Support

» [fyou find any bugs or if you want to give us feedback: jupyterjsc[at]fz-juelich.de

‘ 8
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

https://goo.gl/NM6gZk

]
Access JURECA Cluster (Step 2) ///pl?sqgsp

o Select authentication option: “Password” (Log in your train Account)
 Insert Username and SSH Passphrase

e Authenticate

“« > Q@ © @ & https://jupyter-jsc-login.fz-juelich.de/oauth2-as/oauth2-authz-web-entry e @
Login to Jupyter@|SC
i Username:
Username: train0?? ~]_
Password
SSH Passphrase: 2722727727722
Authenticate C |

Login here: https://goo.gl/NMEgZk

https://igarss2018.org/Tutorials.asp#FD-4

Select your preferred authentication option

Log in with your JSC Web Service Account Log in with your train Account

LDAP-Password Password

Access JURECA Cluster (Step 3) ///Di’sqgsp

(&« > @ @ @ @ httpsy//jupyter-jscfz-juelich.de/hub/home e @ W

Configure My Jupyter

~ Jupyter Home

A 4

e Click on

Jupyter configuration

JURECA login node ~

Load modules from ~/jupyter_modules.sh ?) |

Start JupyterLab instead of notebook server C‘

Please close the JupyterLab service or
click 'Logout’ when you're done. If you
just close the tab the process will still run
on the HPC System.

Kemel Hub Tabs Settings Help
-

t Control Panel

Logout
|

* Clickon a -

k|
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

Access JURECA Cluster (Step 4)

e Click on

EX Launcher

IE Notebook

Python 3

Console

Python 3

LIDEEP

Projects

C C | ® do

C++17 C++1z Javascript (N... Julia 0.6.3

C++17 C++1lz Javascript (N... Julia 0.6.3

Other

Parallel'Rrogramming (MPI) and

Batch Usage (SLURM)

JURECA Cluster Accessed

Parallé'r"-RQ)gramming

B train053@jrl05: X

Information about the system, latest changes, user documentation and FAQs:
http://www.fz-juelich.de/ias/jsc

Known Issues

- An up-to-date list of known issues on the system is maintained at
. http://www.fz-juelich.de/ias/jsc/jureca-—known-issues
* Open issues:

- Intel compiler error with std::valarray and
optimized headers, added 2016-03-28

2018-04-25 =

KA AT HA A AR AR A AR A AT AT AR AT AR A A A A A A A Ak kb vk b vk hd ek H AR K AR K
File system performance during extension of JUST cluster
In the following weeks data will be migrated from JUST4 to JUST5. During
* this time I/0 performance might be impaired. We try to keep the effect on

« user applications as low as possible.

* Thank you for your understanding.

2018-04-25 *
AhkkkhhkhhAhhddhhddhhhdhhhhhhds khkkk FhhkAhhkhhkA bk ddrhddhbhrAbhdbhhhd bk hdhhdid

O0ffline maintenance #i##

Booster Module will be unavailable for software and hardware maintenance on
- Thursday, 2818-87-12 between @8:38 and 18:30

JURECA will be unavailable for software and hardware maintenance on
- Tuesday, 20818-87-31 between ©8:30 and 18:3

2018-07-05 =

AhkAkhhkhhAhhdkAhhdhhhhdhhhdk kkkkhk hkhhhkhhAhhdhhhdrhhrhhhohdhhdk kkkkhkd
Restricted access to SARCH

* Access to $ARCH may be limited due to Problems with one of our tape
libraries. We apologize for the inconvenience caused.

2018-07-06 =

*hkhkhk EE b kAARAAAA A A AN A A AN A A A A AT A A A A hddbbhdbhdbhhohdhhk khkkkhhhhk

[traines3gjries ~15 ||

IIDEEP

Projects

IIDEEP

Navigate to the Material Projects

Is command: it shows the files and directories that are present in your current location

The material of the tutorial is inside the igarss_tutorial folder

cd command: use to access a folder (do $ cd igarss_tutorial)

The material of this first lecture is in the mpi_hello_world folder (do $ cd mpi_hello_world)

[train@53@]jrles ~]15 1s

bin |igarss_tutorial

[train®53@]jrlee ~]S cd igarss_tutorial/
[train@53@jrle6 igarss_tutoriall$ 1s

3dcnn | mpi_hello_world| pisvm

[train@53@jrle6 igarss_tutorial]$ cd mpi_hello_world/
[traine53@]r1lese mpi_hello_world]s 1s

hello_world hello_world.c

[train@53@]jr1le6 mpi_hello_world]$

A

Paralﬁ-l-‘ér"-R[ogramming(MPI) ang Batch Usage (SI‘URI\/I)
i X e

R (IDEEP

Start ‘Thinking’ Parallel Projects

* Parallel MPI programs know about the existence of other processes of it and what their
own role is in the bigger picture

* MPI programs are written in a sequential programming language, but executed in parallel
— Same MPI program runs on all processes (Single Program Multiple Data)

e Data exchange is key for design of applications

— Sending/receiving data at specific times in the program P E | P
— No shared memory for sharing variables with other remote processes

— Messages can be simple variables (e.g. a word) or complex structures

e Start with the basic building blocks using MPI ,’
— Building up the ‘parallel computing environment’ ; P(P]||...

V-

.

‘ s
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

(MPI) Basic Building Blocks: A main() function ///pf,,g!’

‘standard C programming...”

int main(int argc, charsx argv)}pt

-
-
-
-
- -
-
-
-
-—
-
-
p—
-
-

return 0; =

Practice view: use of resiliency is not part of MPI (e.g. automatic restart
and error handlings), therefore this is rarely used in practice

* The main()
function is
automatically
started when
launchinga C
program

* Normally the
‘return code’
denotes
whether the
program exit
was ok (0) or

problematic (-1)

[traine53@jr1e6 mpi_hello_world]$ 1s
hello_world | hello_world.c

]
(MPI1) Basic Building Blocks: Variables & Output

* Libraries can be
used by
including C
header files,
here library for
screen outputs
for example

‘standard C programming...”

#include <stdio.h>

int main(int argc, charx* argv) {
int rank, size; ko

-
-
-

Two integer
variables that
- are later useful
- for working with
specific data

\ obtained from

\ MPI library
return 0; \

.-"’-
-
-

-
had ™
-

} \

i
\
A
'Y

* Qutput with printf using stdio library:
‘Hello World’ and which process is printing out of the summary of all n processes

[traine53@jr1e6 mpi_hello_world]$ 1s
hello_world | hello_world.c

IIDEEP

Projects

MPI Basic Building Blocks: Header & Init/Finalize

‘standard C programming including MPI library use...’

Hinclude —citdio he

#include <mpi.h>

int main(int argc,

charx* argv) {

int rank, size;

MPI Init(&argc, &argv);

»d
-
-
-
-
-
-
- -
-
-
-
LY.
—
-
-
-

printf ("Hello World, I am %d of %d\n", rank, size);

MPI Finalize();

— -
return 0‘:'--..,___

IIDEEP

Projects

Libraries can be
used by
including C
header files,
here library for

b
-
Il-._.

MPI included
The MPI_INIT()
function

initializes the
MPI
environment
and can take
inputs via the
main() function
arguments

MPI_Finalize() shuts down the MPI environment
(after this statement no parallel execution of the code can take place)

[traine53@jr1e6 mpi_hello_world]$ 1s
hello_world | hello_world.c

MPI Basic Building Blocks: Rank & Size Variables

‘standard C programming including MPI library use...’

IIDEEP

Projects

#include <stdio.h>
#include <mpi.h>

int main(int argc, charx* argv) ({ Lo’
int rank, size; ’

MPI Comm size (MPI COMM WORLD, &size); |.”
MPI Comm rank (MPI COMM WORLD, &rank); |~~

| -

1
printf ("Hello World,

-

I am %d of %d\n", rank, %‘.i.-z&);

-
-

MPI Finalize();

The
MPI_Comm_size()
function
determines the
overall number of
n processes in the
parallel program:
stores it in variable
size

1
1
\
L]
1
return 0; 1
l
1
1
]
[

* MPI_COMM_WORLD communicator constant
denotes the ‘region of communication’, here all processes

Parallel Rrogramming (MPI) and Batch Usage (SLURM)
> °

The
MPI_Comm_rank()
function
determines the
unique identifier
for each processor:
stores it in variable
rank with valures
(0...n-1)

[traine53@jr1e6 mpi_hello_world]$ 1s
hello_world | hello_world.c

Job Script ///DEE”

Projects
« Text file containing

— Job setup information for the batch system

— Commands to be executed

Job Delete
Job Submit Command

Command
Write Job Job
Job Script Executes Finished
a
name_script.sh Allocated Job Status Output

Job ID Files

(& Errors)

Command

[11] Batch Systems

Status

. &
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

Job Script - File Creation with vi ///DEEP

Projects

« vi (visual editor): is the default editor that comes with the UNIX operating system
* |t has two modes of operation:

 Command mode commands: cause action to be taken on the file
e |nsert mode: entered text is inserted into the file

* Do the following steps:

[train@53@jr1e6 mpi_hello_world]$ vi submit_hello_world.sh

e $visubmit _hello world.sh

i [%]2. train001@jureca.fz-juelich.de

« Pression your keyboard

Sftp

-- INSERT --

Paralhl-é'r'-R[ogramming(MPI) ana Batch Usage (SLURM) _‘_
S - * -

Job Scrip Editing (1) IIDEEP

Projects

o Start the script with the shebang (i.e., absolute path to the bash interpreter)

« Type as afirst line of your script: #!/bin/bash —x (execute the file using the bash shell)

& [%]2. train001@jureca. fz-juelich.de

»

* Macros

Sftp

—
—
—
—
—
—
—
—
—
—
~—
~—
~—
~—
~—
—
—
—
—
—
—
—
—
—

- INSERT --

Paral‘i‘(hé'r'-RQ)gramming (MPI) angBatch Usage (SI.UR
i *

]
Job Scrip Editing (2)

v

Sessions

* Macros | @& Tools

Sftp

| I S S B S B A N D D T D R R R B B

- INSERT --

Paral‘i‘(hé'r'-RQ)gramming [

[%]2. train001@jureca. fz-juelich.de

PI) angBatch Usage (SI.UR
™

IIDEEP

Projects

#SBATCH--job-name=hello_world

e Set the name of the job
#SBATCH--output=hello_world _out.%);

» Path to the job's standard output
#SBATCH--error=hello_world_err.%,;

« Path to the job's standard error
#SBATCH--mail-user=your_email

» Define the mail address for notifications

#SBATCH--mail-type=ALL

« When to send mail notifications
Options: BEGIN,END,FAIL,ALL

.
Job Scrip Editing (3)

7

Sessions

Sftp | % Macros | & Tools

(D B A D D D A D D T

- INSERT --

[%]2 train001@jureca fz-juelich_de

Paral‘i‘("é'r"-RQ)gramming MPI) ang Batch Usage (SLUR
i @

IIDEEP

Projects

#SBATCH--partition=batch

o Partition to be used from the job
#SBATCH--nodes=1

 Number of compute nodes used by the job
#SBATCH--ntasks=24

 Number of tasks (MPI processes)
#SBATCH--time=00:05:00

 Maximum wall-clock time of the job
#SBATCH--reservation=igarss-cpu

e Use nodes reserved for this tutorial

(ReservationName=igarss-cpu StartTime=2018-07-22T10:45:00 EndTime=2018-07-22T718:15:00)

Y s

T (IDEEP

JOb SC”p Ed|t|ng (4) Projects

[%]2. train001@jureca.fz-juelich.de

e
W 0

Sessions

e module load Intel ParaStationMPI

» Get access to a specific set of software
and its dependencies

« mpirun ./hello_world

module load Intel ParaStationMPI

Sftp | % Macros | @& Tools

mpirun ./hello world [

e Execute the MPI program

- INSERT --

Paral‘i‘(hé'r'-RQ)gramming (MPI) angBatch Usage (SI.UR
i *

IIDEEP

Save and Close the Job Script Projects

[%]2. train001@jureca. fz-juelich.de

 Press in this exact order the following

Sessions

keys of your keyboard:

= o ESC
2

! °

. W

=

4 . . ° q

- module load Intel ParaStationMPI

b =]

w

mpirun ./hello world

Submit the Job Script (IDEEP

Projects

e $sbatch submit_hello_world.sh

hello world hello world.c run hello world.sh
[train@O01@jrl10 mpi hello world]$ sbatch run hello world.sh

Submitted batch job 5761642
[train@01@jr110 mpi hello world]$ |

Paralﬁ-l-‘ér"-R[ogramming‘MPI) ang Batch Usage (SI'UR 1i"
S = > : .

Check the Results ///DEEP

Projects

* |f the job was successfully run, you will get 2 files

[train@01@jr110 mpi hello world]$ 1s

hello world hello world err.5761642 run_hello world.sh
hello world.c hello world out.5761642

[train®01@jr110 mpi hello world]l$

Paralﬁll-é'r'-R{ogramming(MPI) and Batch Usage (SLURM) B -
\,‘__ s ® -

N (IDEEP

he||O_WOr|d_err Projects

[%]2. train001@jureca. fz-juelich.de

[[hB !'= hxB 11

XTRACE STATE=-x

[[hxB '= hxB 1]
VERBOSE STATE=+v
set +xv

unset XTRACE_STATE VERBOSE STATE

module load Intel ParaStationMPI

++ fusr/local/software/lmod/lmod/libexec/1lmod bash load Intel ParaStationMPI

¥

s Tools Sessions

Sftp | * Macros

;hello_world_err.5?61642" 921, 27023C

Parallé'r'-RQgramming PI) an}Batc.h Usage ($HIJJR

.

hello_world out

Sessions

& Tools

* Macros

Sftp

"hello world

World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,
World,

o b

am
dm
dam
am
dam
= 1111
am
am
dm
am
am
dm
am
am
am
dm
am
am
dm
dam
am
dam
= 1111
am

0 of 24
11 of 24
16 of 24
10 of 24
12 of 24
7 of 24
20 of 24
17 of 24
4 of 24
1 of 24
21 of 24
3 of 24
14 of 24
23 of 24
19 of 24
13 of 24
9 of 24
15 of 24
8 of 24
6 of 24
18 of 24
2 of 24
5 of 24
22 of 24

| out.5761642" 24L,

Parali\é'r"-RQ)gramming

[%]2 train001@jureca.fz-juelich.de

IIDEEP

Projects

LIDEEP

Projects

Additional Material

r _
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

JURECA Partitions
Partition Nodes Resources Walltime MaxNodes |Description
batch 1712 | 24(48) CPU Cores |Default: 1 hour 256 |Default partition, normal compute nodes
128/256 GB RAM |Max.: 24 hours (some with 256GB RAM)
devel 20 | 24(48) CPU Cores |Default: 30 mins 8 |Partition mainly for develop-ment (interactive
128 GB RAM Max.: 2 hours jobs)
large 1712 | 24(48) CPU Cores |Default: 1 hour UNLIMITED |Same as batch targeting big jobs (currently
128/256 GB RAM |Max.: 24 hours down)
mem256 128 | 24(48) CPU Cores |Default: 1 hour 128 |Fat compute nodes with 256GB RAM (also in
256 GB RAM Max.: 24 hours batch)
mem512 64 | 24(48) CPU Cores |Default: 1 hour 32 |Fat compute nodes with 512GB RAM
512 GB RAM Max.: 24 hours
mem1024 2 | 24(48) CPU Cores |Default: 1 hour 2 |Fat compute nodes with 1TB RAM
1 TB RAM Max.: 24 hours
gpus 70 | 24(48) CPU Cores |Default: 1 hour 32 |Compute nodes with 4 GPUs available
128 GB RAM Max.: 24 hours (CUDA apps)
2x Nvidia K80 (4 GPUs visible)
develgpus 5| 24(48) CPU Cores |Default: 30 mins 2 |Partition for testing and development on the
128 GB RAM Max.: 2 hours GPUs
2x Nvidia K80
Vis 10 | 24(48) CPU Cores |Default: 1 hour 4 |Compute nodes with 2 GPUs, mainly for
512/1024 GB RAM |Max.: 24 hours visualization SW
2x Nvidia K40
booster 1640 | 68 (272) CPU Cores |Default: 1 hour 512 |KNL (Intel Xeon Phi) compute nodes with 96
(develbooster) (32?) | 96/112 GB RAM |Max.: 24 hours or 112 GB memory (depends on config. of
local memory of 16GB)

* Other partitions: largegpus, largevis (same as gpus and vis but with no max. nodes limit)

Parallel Rrogramming (MPI) and Batch Usage (SLURM)
% A

i

IIDEEP

Projects

[10] JURECA HPC System

System Usage — Modules (IDEEP

Projects

* The installed software of the clusters is organized through a hierarchy of modules.

« Loading a module adapts your environment variables to give you access to a specific set of
software and its dependencies.

* Preparing the module environment includes different steps:

1. [Optional] Choose SW architecture: Architecture/Haswell (default) or Architecture/KNL

2. Load a compiler

3. [Optional] Load an MPI runtime.

4. Load other modules, that where built with currently loaded modules (compiler, MPI, other libraries)

e Useful commands:

List available modules $ module avail
Choose the SW Arch. ¢ module load Architecture/[Haswell|KNL]
Load compiler and MPI $ module load Intel ParaStationMPI
List all loaded modules $ module list
List available modules $ module avail
Check a package ¢ module spider GROMACS [10] JURECA HPC System
Load a module $ module load GROMACS/<version>
Unload a module $ module unload GROMACS/<version>
Unload all loaded modules $ module purge

Parallel Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Slurm — User Commands (1) Projects

« salloc to request interactive jobs/allocations

« sattach to attach standard input, output, and error plus signal capabilities to a currently running job or job step
« sbatch to submit a batch script (which can be a bash, Perl or Python script)

» scancel to cancel a pending or running job or job step

» sbcast to transfer a file to all nodes allocated for a job

« sgather to transfer a file from all allocated nodes to the currently active job.This command can be used only
inside a job script

e scontrol provides also some functionality for the users to manage jobs or query and get some information
about the system configuration

» sinfo to retrieve information about the partitions, reservations and node states

« smap graphically shows the state of the partitions and nodes using a curses interface. We recommend llview
as an alternative which is supported on all JSC machines

[12] SLURM Workload Manager

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Slurm — User Commands (2) Projects

e sprio can be used to query job priorities

e squeue to query the list of pending and running jobs

e srun to initiate job-steps mainly within a job or start an interactive jobs. A job can contain multiple job steps
executing sequentially or in parallel on independent or shared nodes within the job's node allocation

« sshare to retrieve fair-share information for each user

e sstat to query status information about a running job

* sview is a graphical user interface to get state information for jobs, partitions, and nodes

e sacct to retrieve accounting information about jobs and job steps in Slurm’s database

e sacctmgr allows also the users to query some information about their accounts and other accounting

information in Slurm's database.

* For more detailed info please check the online documentation and the man pages
[12] SLURM Workload Manager

' o
Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

Slurm — Job Submission ///DEEP

Projects

 There are 2 commands for job allocation: sbatch is used for batch jobs and salloc is used to allocate
resource for interactive jobs. The format of these commands:

» sbatch [options] jobscript [args...]

« salloc [options] [xcommand> [command args]]

» List of the most important submission/allocation options:

-A|--account Charge CPU-Quota to specified account (budget ID).
-¢|--cpus-per-task Number of logical CPUs (hardware threads) per task.
-e|--error Path to the job's standard error.

-1|--input Connect the jobscript’s standard input directly to a file.
-J|--job-name Set the name of the job.

--mail-user Define the mail address for notifications.

--mail-type When to send mail notifications. Options: BEGIN,END,FAIL,ALL
-N| - -nodes Number of compute nodes used by the job.

-n|--ntasks Number of tasks (MPI processes).

--ntasks-per-node Number of tasks per compute node.

-0| - -output Path to the job's standard output.

-p|--partition Partition to be used from the job.

-t]--time Maximum wall-clock time of the job. [12] SLURM Workload Manager
--gres Request nodes with specific Generic Resources.

Parallel Rrogramming (MPI) and Batch Usage (SLURM)

LIDEEP

Bibliography Projects

* [1] Wikipedia ‘Supercomputer’, Online: http://en.wikipedia.org/wiki/Supercomputer

* [2] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC
Computational Science, ISBN 143981192X

* [3] TOP500 Supercomputing Sites, Online: http://www.top500.0rg/
* [4] LINPACK Benchmark, Online: http://www.netlib.org/benchmark/hpl/
* [5] HPC Challenge Benchmark Suite, Online: http://icl.cs.utk.edu/hpcc/
e [6] JUBE Benchmark Suite, Online:
Online: http://www.fz-juelich.de/ias/isc/EN/Expertise/Support/Software/JUBE/ node.html
e [7] The GREENS5O0O, Online: https://www.top500.0org/green500/

* [8] The OpenMP API specification for parallel programming, Online:http://openmp.org/wp/openmp-specifications/

* [9] The MPI Standard, Online: http://www.mpi-forum.org/docs/
e [10] JURECA HPC System at JSC
Online: http://www.fz-juelich.de/ias/{sc/EN/Expertise/Supercomputers/JURECA/JURECA node.html

e [11] Batch Systems — archer Running your jobs on an HPC machine
Online: https://www.archer.ac.uk/training/course-material/2017/07/intro-epcc/slides/L10 Batch Execution.pdf
[12] SLURM Workload Manager, Online, https://slurm.schedmd.com/

Y ——

Parallel'Rrogramming (MPI) and Batch Usage (SLURM)

http://en.wikipedia.org/wiki/Supercomputer
http://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://icl.cs.utk.edu/hpcc/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.top500.org/green500/
http://openmp.org/wp/openmp-specifications/
http://www.mpi-forum.org/docs/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://www.archer.ac.uk/training/course-material/2017/07/intro-epcc/slides/L10_Batch_Execution.pdf
https://slurm.schedmd.com/

IIDEEP

Projects

Framework
elopment and demonstrati
grant agreement no. FP7-1CT-287530
H: 020-FETHPC-754304 (DEEP-EST).

	Parallel Programming (MPI) �and Batch Usage (SLURM)
	Outline
	High Performance Computing
	What is High Performance Computing?
	Understanding High Performance Computing
	Parallel Computing
	TOP 500 List (June 2018)
	Architectures of HPC Systems
	Shared-Memory Computers
	Distributed-Memory Computers
	Programming with Distributed Memory using MPI
	Hierarchical Hybrid Computers
	What is Message Passing Interface (MPI)?
	Key Keatures of MPI
	Message Passing: Exchanging Data
	Collective Functions: Broadcast (one-to-many)
	Collective Functions: Scatter (one-to-many)
	Collective Functions: Gather (many-to-one)
	Collective Functions: Reduce (many-to-one)
	Batch System
	What is a Batch System?
	Why do we need a Batch System?
	How to use a Batch System
	Batch System Flow
	JSC Batch Model
	Practicals
	JURECA HPC System at JSC
	Access JURECA Cluster (Step 1)
	Access JURECA Cluster (Step 2)
	Access JURECA Cluster (Step 3)
	Access JURECA Cluster (Step 4)
	JURECA Cluster Accessed
	Navigate to the Material
	Start ‘Thinking’ Parallel
	(MPI) Basic Building Blocks: A main() function
	(MPI) Basic Building Blocks: Variables & Output
	MPI Basic Building Blocks: Header & Init/Finalize
	MPI Basic Building Blocks: Rank & Size Variables
	Job Script
	Job Script - File Creation with vi
	Job Scrip Editing (1)
	Job Scrip Editing (2)
	Job Scrip Editing (3)
	Job Scrip Editing (4)
	Save and Close the Job Script
	Submit the Job Script
	Check the Results
	hello_world_err
	hello_world_out
	Additional Material
	JURECA Partitions
	System Usage – Modules
	Slurm – User Commands (1)
	Slurm – User Commands (2)
	Slurm – Job Submission
	Bibliography
	Slide Number 57

